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OUTLINE

 Grid-Forming Inverter & Grid-Following Inverter

 Inverter Modeling Work at PNNL & Model Validation against 
CERTS/AEP Microgrid Field Test Results

 Transient Stability Study of Large-Scale Distribution Systems 
with High Penetration of PV Grid-Forming Inverters
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Grid-Following vs. Grid-Forming
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+ Current Control (PLL+ Current loop)
+ Control P & Q

- Do not control voltage & frequency
- ‘Negative Load’ to Power System
- Reduce System Inertia

+ Voltage & Frequency Control
+ Autonomous Load Tracking

- No Direct Control of Current
- Overload Issues

Grid-Following (Current Source) Grid-Forming (Voltage Source)

Most grid-connected sources (PV, fuel 
cells) use grid-following control

Grid-forming source is crucial for 
islanded microgrid operation

Inverter Control
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• Challenges in simulation: Neither the electromagnetic simulation nor the positive 
sequence-based transient stability simulation works for large-scale, three-phase, 
unbalanced distribution systems simulation

• Solutions: PNNL developed an open-source software—GridLAB-D, which can 
conduct three-phased transient stability simulations for distribution systems. 
Dynamic models include:
• Synchronous generators
• Motors
• Grid-Forming/Grid-Following inverters
• …

How do thousands of grid-forming/grid-following 
inverters impact the transient stability of large-scale 

distribution systems?
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XLE∠δa  
E ω 
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E ω
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Distribution 

System 
Network
Solution

Grid-Forming Controller

Pi,Qi,Vgi

E,ω

Inverter model and the interface to the 
distribution system

Modeling of Grid-Forming Inverters in GridLAB-D
• Grid-Forming Inverter: Three-phase balanced voltage source behind XL & 

Controller
• Network Solution: Extension of Current Injection Method, which allows three-

phase power flow calculation

P-f Droop and Overload Mitigation

Q-V Droop



6

-50

0

50

100

150

 

 

A1 Power kW
B1 Power kW
ESS Power kW
LB4 Power kW

-200

0

200

 

 

A1 Current phase a A
A1 Current phase b A
A1 Current phase c A

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-200

0

200

Time Seconds

 

 

B1 Current phase a A
B1 Current phase b A
B1 Current phase c A

 AEP Test Data 3/18/2016 10:53:09.5829

-50

0

50

100

150

 

 

A1 Power kW
B1 Power kW
ESS Power kW
LB4 Power kW

-200

0

200

 

 

A1 Current phase a A
A1 Current phase b A
A1 Current phase c A

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-200

0

200

Time Seconds

 

 

B1 Current phase a A
B1 Current phase b A
B1 Current phase c A

 Simulation

Field Test Results

PSCAD Simulation, Time 
Step = 50 μs

Under-Frequency Load Shedding: Generator vs. Inverter

Feeder A

Feeder B

Inverter-based Source Inverter-based Source

Energy Storage Synchronous Generator

Load Bank 3 Load Bank 4

Load Bank 5

Feeder C

Load Bank 6Grid

Static Switch

A1

ESS B1
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• In most microgrids, load shedding is achieved through fast 
communication. The CERTS microgrid can do under-frequency 
load shedding.

• By ignoring electromagnetic transients, GridLAB-D is able to 
conduct transient analysis of large-scale, three-phase, 
unbalanced distribution systems

CERTS/AEP  Microgrid

Time Step = 5 ms

Validation against CERTS/AEP Microgrid Test Results
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An Islanded IEEE 123-Node Test Feeder with High Penetration of PVs

• Synchronous Generators: 3*600 kW
• 6 Distributed PV Inverters: 1400 kW
• Peak Load: 2150 kW + 490 kvar
• PV Penetration: 65%  (compared to 

peak load)

• Substation voltage is lost due to 
extreme weather events, three 
microgrids work as an islanded
networked microgrid

• Contingency: Loss of Generator 3

Simulation on a Modified IEEE 123-Node Test Feeder

Gen PV
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PV: Grid-Following controlled at MPP

• PV operates at Maximum Power Point
• Contingency: Loss of Generator 3
• Frequency drops fast due to the low inertia, 12% 

Loads are tripped

GridLAB-D Simulation
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Simulation on a Modified IEEE 123-Node Test Feeder
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• As the penetration of PVs continues increasing, 
dynamic reserve of PVs has the potential to 
improve the transient stability

• How do we use this reserve?

33% Reserve

Simulation on a Modified IEEE 123-Node Test Feeder
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Simulation on a Modified IEEE 123-Node Test Feeder

33% Reserve
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• PV: Grid-Following with Frequency-Watt
• Not only reduces the system inertia, but also results in 

oscillations between generators and inverters
• Loads are still tripped
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Frequency-Watt Control
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Improve frequency control

Simulation on a Modified IEEE 123-Node Test Feeder
• Grid-Forming PV with dynamic reserve can improve 

frequency stability, load shedding is avoided
• Grid-forming inverters response to load changes 

instantaneously
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Mitigate voltage unbalance

Grid-Forming

Simulation on a Modified IEEE 123-Node Test Feeder

• Grid-Forming inverters can improve voltage control, 
voltage unbalance is mitigated

• All PV inverters become three-phase, balanced voltage 
source behind XL, system is stiffer



13

Conclusion

• A three-phase, electromechanical modelling approach is proposed to model 
Grid-Forming/Grid-Following inverters for large-scale distribution system study

• The developed Grid-Forming inverter model in GridLAB-D is validated against 
CERTS Microgrid test results

• PV Grid-Forming inverters with dynamic reserve can improve Frequency & 
Voltage stability of distribution systems



Thank you

14



15

Backup Slides



16

Simulation on a Modified IEEE 123-Node Test Feeder

• The voltage profile of the entire distribution feeder is 
significantly improved

• The three-phase unbalanced characteristic cannot be 
easily reflected by positive-sequence-based 
simulation

Grid-FormingGrid-Following
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Grid-Following with Frequency-Watt Grid-Forming

Currents Currents

• Grid-Forming inverters provide larger currents than grid-following inverters, 
because they need to provide reactive power to support the voltage 
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Validation against CERTS/AEP Microgrid Test Results

CERTS/AEP  Microgrid

Time Step = 5 ms

By ignoring electromagnetic transients, GridLAB-D is 
able to conduct transient analysis of large-scale, 
three-phase, unbalanced distribution systems

PSCAD Simulation, Time 
Step = 50 μs

Field Test Results
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Tecogen’s response to fault
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Grid-Forming Inverter & Droop Control

• Grid-Forming inverter: voltage source behind a coupling reactance XL

 A well designed XL is important for controller design: P∝δ, Q∝E

• Droop Control: make multiple inverters work together in a microgrid
 P vs. f droop ensure sources are synchronized 
 Q vs. V droop avoids large circulating reactive power between sources

P vs. f droop Q vs. V droop



Inverter model and the interface to the 
distribution system

Phase-Lock Loop

Current Loop
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Modeling of Grid-Following Inverters in GridLAB-D
• Grid-Following inverters are usually modeled as controllable PQ node in 

traditional transient stability analysis software, PLL and current loops are ignored
• In GridLAB-D, they are modeled as controllable voltage sources, and detailed 

PLL and current loop are modeled
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Synchronous Generator
• Why synchronous generators need inertia?

• A synchronous generator behaves as a voltage source behind Xd’’ in transient 
• Pe responses to load changes instantaneously
• Pm from prime mover changes slowly
• The unbalance between Pe and Pm results in the change of speed
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